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Basic Course Information

Course Title

Course Code

Electrical Circuit -1l

EEE 0713-1102

Credit

03

Marks

150




SYNOPSIS/RATIONALE

This course Is offered to the students of the EEE
department to develop fundamental concepts of
transient analysis of electrical circuits, coupled and
poly-phase circuits and resonance analysis. Students
will also learn the concepts of balanced and unbalanced
circuits.




OBJECTIVE

This course has been designed for the students.

@ To familiarize with the transient condition analysis of
electrical (AC & DC) circuits

To provide knowledge about single and three-phase AC
circuits

® To provide analytical ideas about resonance in AC
circuits

To evaluate a balanced and unbalanced AC system




Course Learning Outcome
(CLO)

CLO-1:
Describe the
transient and
resonance
conditions in
simple
electrical
circuits

CLO-2:

Apply
different
techniques to
solve AC
circuits in the
phasor
domain

CLO-3:
Evaluate
resonance
circuit
characteristic
s used in ac
power
transfer

CLO-4:
Design
different
types of
balanced and
unbalanced
systems.

&

o " Create

Fyaluate

Analyse

Understand

Remember

(\
%<
X

o




ASSESSMENT PATTERN

CIE- Continuous Internal Evaluation (90 Marks)

Bloom’s Tests
Category Mid-

term
-ASSESSMENT-
(out of 90) Class Test 15 l
Remember 08 |
Understand @ | Freseniation) 19 @ . O l @ [©
Apply 08 Attendance 15  Analysis  Planning  Process Audlt:  Quiiy:  Result
Analyze 08
Evaluate 08

Create 05



ASSESSMENT PATTERN

SEE- Semester End Examination (60 Marks)

Bloom’s Tests
Category
Remember 10
Understand 10
Apply 10
Analyze 10
Evaluate 10

Create 10




Assessment Strategy Overview

Quizzes:

Weeks 1, 3, 5,
7,11, 12, and
14 to evaluate
theoretical
knowledge.

Assignments  Midterm
Exam

Weeks 2, 6, Week 8§,

10, 13, and 15 covering

to practice content from
problem- Weeks 1-7.
solving skills.

Mock Test

Week 16 for
final exam
preparation.

Final Exam

Week 17,
comprehensiv
e assessment
across all
CLOs.




COURSE CONTENT

v Basic characteristics of sinusoidal functions.

v" Forced response of first-order circuits to sinusoidal excitation.

v’ Instantaneous, average, and reactive power due to sinusoidal
excitation, effective values, and power factor.

v' Complex exponential forcing functions, phasors, impedance, and
admittance.

v" Basic circuit laws for AC circuits.

v Nodal and mesh analysis, network theorems for AC circuits. O

v" Balanced and unbalanced three-phase circuits, power calculation. O O



Time distributions

Course Content CLOs Hours
Basic characteristics of sinusoidal functions CLO1 4
Forg:ed_ response of first-order circuits to sinusoidal CLO? 4
excitation
Instantaneous, average, and reactive power due to

: : . : CLO3 6
sinusoidal excitation, effective values, and power factor
_Complex exponentla_l forcing functions, phasors, CLOL CLO? 6
Impedance, and admittance
Basic circuit laws for AC circuits CLO1 4
I\!oda_l and mesh analysis, network theorems for AC CLO2, CLO3 6
circuits
Balanced and unbalanced three-phase circuits, power CLO3, CLO4 4

calculation




Course Schedule

Week |Course Content Teaching-Learning Sources Assessment CLOs
Strategy Strategy
Basic  characteristics  of|Lecture, examples, Khan : Acade_mv: Qlass : Quizon
1 : : : Sinusoidal Functions|sinusoidal CLO1
sinusoidal functions Q&A : )
& Slide properties
Sinusoidal  excitation and Lecture with worked Neso Academy: First-|Assignment 1
2 forced response of first-order Order _ Circuits &|Forced response|CLO2
- examples .
circuits Slide problems
Instantaneous, average, and Lecture roblem- All _About Circuits: Ouiz: Power
3 RMS wvalues in sinusoidal . P Power Calculations & I CLO3
N solving , calculations
excitation Slide
4 Complex exponential forcing|Lecture, interactive Xr:; Sg%\/\g" dFe’hasor Problem-solving CLO3
functions and phasors discussion ANAYSIS exercise
Different types of power and
5 power factors for sinusoidal|Lecture and | YouTube: Power|Class Quiz on|CLOl,
functions discussions Factor & Slide phasors CLO2



https://youtu.be/yX2lWewffpI
https://youtu.be/gZ4yMAheugk
https://www.allaboutcircuits.com/
https://youtu.be/3Mxl9S3ExV8
https://youtu.be/XMGhZyoBr2o

Course Schedule(Cont.)

Teaching- Assessment
Week Course Content |Learning Sources CLOs
Strategy
Strategy
Impedance  and _ Assignment 2.
6 admittance in AC |6CtUre, problem-) YouTube: - 00000 CLO1, CLO?
o solving sessions | Impedance Basics
circuits problems
Basic circuit laws .
KVL and KCL J R PP
Nodal analvsis in Lecture, Midterm Exam
8 ; analy examples, group|Nodal Analysis covering Weeks| CLO2
AC circuits : .
discussions 1-7
9 Mesh_ an_aly5|s in| Lecture, step-by- Mesh Analysis Problfem-solvmg CLO?
AC circuits step examples exercise
Network Assignment 3:
10 theorems: Lectqre with | Thevenin/Norton Thevenin/Norton | CLO2, CLO3
Thevenin and | practical examples | Theorem

Norton’s Theorem

problems



https://youtu.be/E9R3t4MbuRA
https://youtu.be/LUv7ZfPTn2Q
https://youtu.be/4Yb3iOkaPI8
https://youtu.be/b7OTaEGmcic
https://youtu.be/3LN2Cu8kRkA

Course Schedule (Cont.)

Teaching- Assessment
Week Course Content Learning Sources CLOs
Strategy
Strategy
11 Superpo§|t|o_n Theorem Lect_ure, problem- | Superposition Quiz: Network CLO2. CLO3
and applications solving Theorem theorems
12 B_alar_lce.d thr_ee-phase Lect_ure, problem- Three_—Phase Class sz_on_ CLO3, CLO4
circuits: Basics solving Circuits balanced circuits
Power calculations in : _
13 palanced three-phase Lecture, step_-by- Balancec_i Power | Assignment 4._ CLO3, CLO4
step calculations | Calculation Power calculations
systems
Unbalanced three-phase .
14 circuits: Theory and Lecture, examples U_n bal_anced Q.U'Z'. Unbalanced CLO3, CLO4
. Circuits circuit problems
analysis
Power factor correction Lecture, Q&A, Power Factor ,(As\ggiu?]ment'
15 techniques in three-phase |real-world : J ' CLO3, CLO4
Correction Power factor
systems examples

solutions



https://youtu.be/FKYRL_o3NxE
https://youtu.be/vFwBx2iZHAo
https://youtu.be/WmUdB28p1kc
https://youtu.be/5Jblq9O9IYc
https://youtu.be/DjzDgm9cO2A

Course Schedule (Cont.)
Teaching- Assessment
Week Course Content Learning Sources CLOs
Strategy
Strategy
Review of all key Revision Course slides and Mock Test for
16 topics and advanced lectures, practice : final exam CLO1-CLO4
. : previous sources )
problem-solving questions preparation
Final assessment and | Comprehensive | Course slides and | Final Exam:
17 student feedback review and Q&A | review material Comprehensive CLOL-CLOA
v A

vl
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Reference Books

Charles K. Alexander Matthew N.O. Sadiku
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Basic characteristics of
Sinusoidal Functions
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Introduction to Current
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Current: Flow of Water. Electric Current: Flow of Electron.



Types of Electric Current

Direct Current (DC) Alternating Current (AC)



What is AC?

AC stands for 'alternating
current' which means the
current constantly changes
direction.

VYIRS

direct

\/\j\/variable

t
Aj\)\ﬁt&rnating

Alternating Current (AC)

i tv b
0‘ \/l 0 ‘ (0 \/ t

Stnusoidal Square wave Triangular wave




How AC voltage can be generated?

N

Sinusoidal ac voltages are available
from a variety of sources. The most
common source is the typical home
outlet, which provides an ac voltage
that originates at a power plant.
Most power plants are fueled by
¥vat_er power, oil, gas, or nuclear
usion.

il
Q_ Q-




How AC voltage can be generated?

In each case, an AC generator/alternator as shown
in Fig. is the primary component in the energy-
conversion process. The power to the shaft
developed by one of the energy sources listed
turns a rotor (constructed of alternating magnetic
poles) inside a set of windings housed in the stator
(the stationary part of the dynamo) and induces a
voltage across the windings of the stator, as
defined by Faraday’s law,

E=N—
dt

€ Voltage

North pole South pole ;
\ ) t Time

\ e
\

Load resistance

QA WIS 1T 6] R 13 old 1 3 17 (ot L e OaTRIE Ry el 2 a0 ¥




Visualization

How the Sinusoidal ‘
Function is related to the

rotation of the Armature!




Characteristic

AC Power

DC Power

Direction of Flow

Alternates direction

Constant, one direction

Typical Uses

Home and office electricity, large
motors

Electronic devices, batteries

Transmission
Distance

Long-distance(with less energy
loss)

Short-distance (better for
energy storage)

Conversion

Transformable voltage levels

Direct and stable output

vsDC
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Sinusoidal excitation and
forced response of first-
order circuits
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Introduction

First-order circuits:

Circuits containing one energy
storage  element (capacitor or
Inductor) and resistors.

RL Circuit




Introduction (Cont.)

Why sinusoidal excitation?

Sinusoidal signals are foundational in 1

AC analysis due to their steady-state e [ a s e s —

behavior and periodic nature '

Applications: Used in filters, ; _ ; >
_ o Transient ! Steady state 1

oscillators, and  communication Response Response

organisms.



AC Excitation with Resistive Load

Alternating Voltage and Current

Resistive Load Behavior: Whenan AC |
voltage source is connected to a purely

resistive load, the current and voltage @
are in phase. - I

QLor-

MakeAGIF.com



AC Excitation with Resistive Load
(Cont.)

Voltage

el

Current

Voltage and current have the same
sinusoidal shape, and there is no
phase shift (¢p=0).

Practical Examples: Electric heaters,

Incandescent bulbs, and other resistive
devices.

Resistive Load




AC Excitation with Inductive Load

Inductive Load Behavior: When an AC - Y\
voltage source is connected to an
Inductor, the current lags the voltage by
90¢=90 ).
Y

v =V, sinwt



AC Excitation with Inductive Load
(Cont.)

This lag occurs because the
Inductor opposes changes In
current, storing energy in its
magnetic field.

makeagifcom



AC Excitation with Inductive Load

(Cont.)

Inductive Reactance:
Opposition offered by an
Inductor to AC: XL==wL,
where w=2mfis the angular
frequency. The higher the
frequency, the (greater the
Inductive reactance.

AC Source

Voltage

/ Current

Inductive
Load

m|:4

2

of



AC Exclitation with Capacitive Load

switch

Capacitive Load Behavior:
When an AC voltage source is
connected to a capacitor, the

current_leads the v-oltage by Vi @ Vers
90. This phase shift occurs

because the capacitor stores
energy In the electric field and
opposes voltage changes.




AC Excitation with Capacitive Load
(Cont.)

Capacitive Reactance: +
Opposition offered by a Vmae--
capacitor to AC is given by |
Xc=1llwC , where w=2nf. The
lower the frequency, the
higher the capacitive

reactance. _ *3'4:' - *',-4‘? . *2-4; *:*',-4;
Charge Discharge Charge Discharge




AC Excitation with Capacitive Load

(Cont.)

Power in Capacitive Loads:
The power alternates between
positive and negative, and the
average power Is zero (purely
reactive power). Capacitors do
not dissipate energy but
transfer it back and forth with
the source

o

8




Resistance, Reactance & Impedance

Resistance  Reactance |

Impedence
/. R L
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Definitions

Waveform: The path traced
by a quantity, such as the
voltage in Fig., plotted as a
function of some variable such
as time (as above), position,
degrees, radians, temperature,
and so on.




Definitions

Instantaneous value: The
magnitude of a waveform at
any instant of time; denoted
by lowercase letters (el, €2 in 10

Fig.)




Definitions

Peak amplitude: The
maximum  value of a
waveform as measured from
Its average, or mean, value,
denoted by uppercase letters
such as Em (Fig.) for sources
of voltage.

Max

!
!
1
4
4
I
!

!
'

0




Definitions

Peak-to-peak value:

Denoted by Ep-p or Vp-p,

the full voltage between

positive and negative peaks ,."

of the waveform, that is, the

'

sum of the magnitude of the

positive and negative peaks.



Definitions

< TI > -
- . Max
Periodic waveform: A
waveform that continually
repeats itself after the same "]‘ E]'"
. - !
time interval 4
! Em

Max




Definitions

Period (T): The time of a
periodic waveform.

Cycle: The portion of a
waveform contained in one il
period of time. '

Frequency ( f): The number
of cycles that occurinls.




Basics of Sinusoidal

The velocity with which the radius vector rotates about the center, called
the angular velocity, can be determined from the following equation:

A% o distance (degrees or radians)
RIE YEOBT= time (seconds)

(24
@ = —
t
and a = wt
_2r

w = T (rad/s)

o=2af| (radls)




Mathematical Expression of
Sinusoidal Asin (@t — &)

(=1 sinwt =1 sin« ¢

e=FE sinwt=E, sina«




Average value

The average value of a sine wave Is
also known as the mean value. It's _
useful for calculating the equivalent

DC value of rectified AC outputs. Peak to peak
value (V)

e o e e

- Periodic time T (Frequency = 1/T)
y




Average value

The average value of a sine wave is
calculated by: Integrating the area
under the curve of one cycle and then
dividing by the cycle's period.

The average value of a sine wave over a
complete cycle iIs zero because the
positive and negative halves of the
wave cancel each other out. However,
the average value of a sine wave over
half a cycle Is 0.637 times the peak
voltage.

Peak value (V,or V,,,.) Relative to zero

... RMS value (Vi) =V, x 0.707
/N, Average value (V,,) = V,, x 0.637
b 0 8NN line (May also be zero)
Peak to peak
value (V,,)

Periodic time T (Frequency = 1/T)
B >




Average value (Equation)

The average of all the instantaneous
values of an alternating voltage and

currents over one complete cycle is
called.

R VR U + I,  Areaof alternation

X n Base

14

Current




R.M.S value

1 RMS stands for Root Mean Square

 This value represents the "effective"
value of a sine wave, essentially the
equivalent DC voltage that would
produce the same amount of power
In a resistor.

Root
mean
square



R.M.S value (Mathematical Equation)

. 1 T
Mean value of i, = — 2
2=— [ i*d6

1 pm 2 2, m
(Irms)* = — fﬂ Im Sin29.d0 - “%} fu Sin” ©.d6

LY [T 1 (1)1n Sin20 1T
:{?} 0 T{I—CDS 20)dB = T [e' 5 ]D
4 For a sine wave, the RMS value is “m}z[(n_ Sin zn)_( O-Sin2x0)]
RPL: 2 2

always 0.707 times the peak value m
due to the mathematical properties of K
the sine function. _

2

YT N — (] - m
o) [(-0)— (0-0)] = =

IRMS = I—m =0.707 |m

V2

3

P

Slmllarly Erms = E_m =0.707 Em

V2



Average value Vs. R.M.S value

v v
0 /4 2m 0 7T 2
\./Mt \/’wt
Absolute
Value Square
0 14 2 it 0 T 2 it
: Averaging
Averagin
g g and IIJ"
1 2n 1 2
vV =— v|d(wt = [— 2
AVE ano |v|d(wt) Veus Zn'L v2d(wt)
The average value is obtained The RMS value is obtained
by taking the average of by taking the square root of
the absolute values |v| of the average of
the sine wave v. the squared values v? of
the sine wave v.




Different Factors

Waveform RMS value Crest factor Form Factor
Sine wave :}-Eor 0.7071 VZor 1.414 1.11
Triangular Wave V% or 0.577 V3or 1.732 1.154
Square Wave 1 1 1
Saw tooth Wave 1 or0.577 V3 or 1.732 1.154

V3
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Complex
forcing
phasors

exponential

functions

and

Vector rotation

ﬁ ® rads’s
oeP +V

120° - a4 V(x'» =V, sin(ot + ¢)

¢ 240° 300°

360°

180°

30° 60° 90° 120° 150°

” j -

210° | 270° | 330
!

210°

Sinusoidal Waveform in
the Time Domain

RotatingPhasor




What Iis phasor?

+V

+im

A phasor is a complex number
that represents the amplitude and
phase of a sinusoid.

0

Voltage, (V)

Current, (]
*
3T

Z

2T+

of




Complex Number System

imag‘inary
+Im(2)
B =tan? ‘%l
A (0] .
= Re(z)
' r — 2 2
T r= \/x T y

Polar form a complex number




Complex Number Operation

2+35 175 - 334 -36 +310 (35.2£.65°) (10 £ -12°) = 350.£ 53°
+ 4-)3 + 80-315 + 20382 (124 2 250°) (11.£100°) = 1364 2 -10°

. * 3 Or
4+ - - +
6+ j2 255 - j49 16 +j92 1364 £ 350°

(3£.30°) (5£ -30°) =152 0°

Tips : Add or Subtract in Cartesian form But Multiplication or Division in Polar form




Representation of voltage & current in ph

v(r) = V,, cos(wr + &) <> V =V /P
(Time-domaimn ({ Phasor-domain
representation) representaton)

Time domain representation Phasor domain representation
V, cos(et + ) Vm &

V,p sin(wt + ¢) h%¢—%°

I,, cos(wt + 0) /0

[, sin(wt + 6) QJO—%°




Phase Relationship

In-phase ($ = 0°) Positive Phase (+) Negative Phase (-4)

Phase Relationship of a Sine Wave

A +Am

A = Am Sin(ot) Ay = An SIN(ot+0) A = Am SIn(ot-0)




Positive and Negative Phase (Lead
and Lag)

Current lags behind voltage

voltage current



Practice

Transform these sinusoids to phasors:

(a) i = 6 cos(50r — 40°) A

(b) v = —4sin(307 + 50°) V

Solution:

(a) i = 6 cos(50¢ — 40°) has the phasor
I=6/—40°A

(b) Since —sin 4 = cos(4 + 90°),

v = —4sin(30r + 50°) = 4 cos(30r + 50° + 90°)
= 4 cos(30r + 140°) V

The phasor form of v is

V=4/140°V
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Different types of power
and power factors for
sinusoidal functions

voltage current




Basics of apparent or complex power

L Apparent power, often represented as
"S" In electrical engineering, is the total
power seemingly drawn by a circuit.

=

. Reactive Power
. Q=KVAR

It is calculated by simply multiplying
the RMS voltage and current.

S = kVA

Active, True
or Real Power

P = Watts

4 It includes both the "real power" (active
power that does work) and "reactive
power" (energy stored in inductors and
capacitors that oscillates back and forth)
within a circuit;

— Apparent Power

yww.electricaltechnology.org

Beer Analogy of Active, Reactive & Apparent Power



Basics of apparent or complex power

Key points about apparent power:

Calculation: Apparent power (S) is
calculated by multiplying the RMS
voltage (V) and RMS current (1): S
=V *I.
Unit: Measured
(VA).

In volt-amperes

Relationship to real and reactive
power: Apparent power is the
hypotenuse of the power triangle,
where the real power (P) is the
adjacent side and reactive power (Q)
IS the opposite side.

Real
Power J

Apparent
Power

Reactive
L Power

Representation: Complex power
expressed as S = P + jQ, where "P" is
the real power (active power) and "Q"
IS the reactive power.

Interpretation: The magnitude of
complex power (|S|) is equal to the
apparent power.

Power factor: The phase angle
between  voltage and  current
determines the power factor, which is
calculated as cos(0) where 0 is the
phase angle.



Basics of apparent or complex power

The complex po-vver may be e};pres-sed in terms of the load ilnpéd—
ance Z. From Eq. (11.37). the load impedance Z may be written as

vV \"rrn'm I"—rnn g -
&= T3 = B — B, (11.45)

s ll“lllS

Thus, Vs = Zl,,,,s. Substituting this into Eq. (11.41) gives

2
V rms

— 2 e o 3
S = IrrnsZ == 7 et Vrrnslrrns (11'46)

Since Z = R + jX, Eq. (11.46) becomes
S = I (R + jX) =P + jO (11.47)
where P and Q are the real and imaginary parts of the complex power;
that is,
= Re(S) = I5..R (11.48)

> ~

O = Im(S) = 72, X (11.49)



BaSics Of Real power How it's calculated?

In DC circuits, real power is
Real power, also known as active calculated using the formula P=I2R)
power, is the power that an electrical In AC circuits, the calculation also
system uses to perform work. It's takes into account the phase

measured in watts (W) and is the difference between the voltage and
power that powers household current.

appliances and machinery.

What it does
Real power is the power that powers
devices like lightbulbs  and

How it's related to other types of
power?

Real power is one of three types of
phones. It's the power that's power: real power (P), reactive power
converted into heat, light, and (Q), and apparent power (S). The
motion. relationship between these three types
of power can be represented using a
power triangle




Basics of Real power

Real power is the power actually consumed due to the resistive load. The unit of real power

l Vm ]m
P==V,I cosf, —0)= cos (0, — 0,

=K «sl s COS 9; = 9,'
Is watt(w). It is denoted by P. rms s COS(0 )




Basics of Reactive power

Reactive power is the power that
flows back to the grid in an
alternating current (AC) system, and
Is also known as phantom power. It's
different from active power, which
IS the power that's consumed by the
load

How it works

In an AC system, reactive power
flows back and forth between the
phase conductors and the neutral
conductor. This Is because the
system has different phases, which
are caused by elements

Reactive

Power

Types of reactive power

There are several types of reactive power,
including inductive, capacitive, and
harmonic.

Measurement

Reactive power is measured in volt-
ampere-reactive (VAR).

Power factor

The ratio of real power to apparent power
Is called the power factor. A power factor
less than one indicates reactive power Is
present in the system.




Power Triangle

Power Triangle is a right angled
triangle whose sides represent the
active, reactive and apparent power.
Base, Perpendicular and
Hypogenous of this right angled
triangle denotes the Active, Reactive
and Apparent power respectively.

Power Triangle

Apparent Power
Measured in VA

S=VI

S Q
§=V(P’+Q’)

KVA = VKW *+ KVAR?

Reactive Power
Measured in VAR
Q=VI1SinB

Active, Real or True Power
Measured in Watts

P=VICosB www.electricaltechnology.org



What is

Power factor is defined as the
cosine of angle between the voltage
phasor and current phasor in an AC
circuit. It is denoted as pf. For an
AC circuit, 0<pf<l whereas for DC
circuit power factor is always
Unity(1).

Power factor (PF) is the ratio of
working power to apparent power in
an electrical system. It's a measure
of how efficiently electrical power is
converted into useful work

Apparent Power
Measured in VA

S=VI

power factor?

Power Triangle & Power Factor

S

S= (P2 + QZ)
KVA = VkW "+ kVAR?

Active, Real or True Power
Measured in Watts
P=VI|Cosb

Reactive Power
Measured in VAR
Q=VI1Sing

P=VICosb
P

CosB =—
0s V1

_ kw

Cos6 = VA

True Power
CosB =

Apparent Power

-R
CosO = 7

CosO =

kW _
KVA = Power Factor

Active Power
Reactive Power

Power Factor =

www.electricaltechnology.org



Whatis power factor?

Also power factor(pf) can be define as
following,

1. Power factor, pf = cos(8v —6i)

. Cos0 = Active Power / Apparent Power

2

3 CosO =P/ VI

4, Coso=P/S

5. CosO = kW /kVA

6. Cos6 = Resistance(R)/Impedance(2)



Types of Power factor

Types of power factor Leading
PF

(C load)
Unity PF Lagging

Ideal power factor: The ideal power
factor is 1, or unity.

Leading power factor: This occurs when the (R load) i
current leads the voltage. Capacitive circuits, ( L load)
such as those with capacitor banks or
synchronous condensers, have a leading power
factor.

Lagging power factor: This occurs when the
current lags behind the voltage.



Importance of Power factor

Power factor is important because it
directly reflects the efficiency of an
electrical system, indicating how effectively
the supplied power is being utilized for
useful work; a low power factor means
more current is needed to deliver the same
amount of power, leading to increased
energy losses, higher electricity bills, and
potential equipment damage, while a high
power factor signifies optimal power usage
and reduced system strain.

Wasteful lag is reduced to increase energy efficiency.

/,/'
VOLTAGE / CURRENT WASTE
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Impedance and
admittance in AC circuits

Vs

Y2

Ve



Sinusoid & Phasor

Power factor is important because it
directly reflects the efficiency of an
electrical system, indicating how effectively
the supplied power is being utilized for
useful work; a low power factor means
more current is needed to deliver the same
amount of power, leading to increased
energy losses, higher electricity bills, and
potential equipment damage, while a high
power factor signifies optimal power usage

and reduced system strain. Wasteful lag is reduced to increase energy efficiency.

/OLTAGE ’//CURRENT - WASTE




Sinusoid & Phasor

A phasor is a complex
number that represents the
amplitude and phase of a
sinusoid.

Time domain representation

Phasor domain representation

V. cos(wt + ¢)
V. sin(wt + )
[,, cos(wt + 0)

L, sin(wt + 6)

VIN &
VI" z ¢ - 900
1 m @

L, /6 —90°




Practice (Mathematics)

Find the amplitude, phase, period, and frequency of the sinusoid

o(r) = 12 cos(501 + 10°)

Solution:

The amplitude is V,, = 12'V.

The phase is ¢ = 10",

The angular frequency 1s @ = 50 rad/s.
o

, 2
The period T = — = —=(.1257s.
o 50

l
The frequency is f = T 1958 Hz.



Practice (Mathematics)

Calculate the phase angle between v, = —10 cos(wt + 50°) and v, =
12 sin(wr — 10°). State which sinusoid is leading.

Solution:
Let us calculate the phase in three ways. The first two methods use
trigonometric identities, while the third method uses the graphical
approach.

Bl METHOD 1 In order to compare v; and v, we must express
them in the same form. If we express them in cosine form with pos-
itive amplitudes,

vy = —10 cos(wr + 50°) = 10 cos(wtr + 50° — 180°)
vy = 10cos(wr — 130°) or v, = 10cos(wr + 230°) (9.2.1)

and

v> = 12 sin(wr — 10°) = 12 cos(wr — 10° — 90°)
v, = 12 cos(wr — 100°) (9.2.2)

It can be deduced from Egs. (9.2.1) and (9.2.2) that the phase differ-
ence between v, and v, is 30°. We can write v, as

v, = 12 cos(wr — 130° + 30°) or v, = 12cos(wt + 260°) (9.2.3)
Comparing Egs. (9.2.1) and (9.2.3) shows clearly that v, leads v, by 30°.



Impedance

In AC circuits, "impedance"
measures how much a circuit
resists the flow of alternating
current (AC), combining both
resistance and reactance, while
"admittance" is the reciprocal of
Impedance, indicating how easily
current can flow through a circuit,
and is made up of conductance and
susceptance;

Impedance ( Z)

Resistance Capacitive Reactance Inductive Reactance

ow=2nf




Capacitive reactance

Capacitive  reactance is the
opposition offered by a capacitor
to a change in current, while
inductive  reactance is  the
opposition offered by an inductor
to a change in current; essentially,
they both represent the resistance
to alternating current flow within a
circuit due to the specific
properties of capacitors and
inductors, with the key difference
being that in a capacitor, current
leads voltage, and in an inductor,
current lags voltage.




Inductive reactance

Inductive reactance is usually
related to the magnetic field
surrounding a wire or a coil
carrying current. Likewise,
capacitive reactance is often linked
with the electric field that keeps
changing between two conducting
plates or surfaces that are kept
apart from each other by some
insulating medium.

€ Learnchannal-TV.com

Im(Z)T




Impedance Triangle

Cireuit Impsdance
element Symbol Value
A

An impedance triangle is a right | resistor R R 7
triangle  that represents the X: X, —Xc
impedance of an AC circuit. The
triangle’s sides represent the 1 )
resistance, reactance, and | Cepacior | Xc JoC R
Impedance of the circuit

Inductor X, jwL |Z] =/R2 i (XL - XC)Z




Practice (Math)

Find the input impedance of the circuit in Fig, 9,23, Assume that the Example 9.10
circuit operates at @ = 30 rad/s

ImF 02

Solution: O———""
Lt )

L, = Impedance of the 2-mF capacitor

T |0 mF
Ly = Impedance of the 3-{) resistor in sries with the (-mF O—r
capacitor Figure 9.23

For Example 9.10,
L5 = Impedance of the 0.2-H inductor in series with the () R

resistor



Practice (Math)

Then The input impedance is
3 —j2)8 +j10
] l . Zin=Z|+Z3”Z3=—j10+( j)( j )
=== —— = I+ 78
joC SOX2x10° ; (44 + j14)(11 — j8) :
= —jl0 + = —jl10 + 3.22 — j1.07 ()

| 1 112 + 82
=3+ —=}+———=(- )
ij j50X 10x10° Thus,

L=8+jul=8+30Xx02=(+]10) Z, =322 —j11.07Q



Homework

 Practice Problem 9.11

05H

m

sy (F) 19 e

Figure 9.27

Calculate v, in the circuit of Fig, 9.27.

Answer: v.(1) = 35,36 cos(10r = 105°) V.
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KVL and KCL

r

[ Kirchhoff's Laws ]

- N
Kirchhoff's
Current Law

(KCL)

o _J

Voltage Law

(KVL)

- N
Kirchhoff's

. -

y




KVL

Kirchoff's Voltage Law (KVL) states
that the sum of all voltage changes
encountered along any closed path in
an electric circuit is zero.

KVL is ultimately a statement of

energy conservation; if it did not hold

we could create electric circuits that V
produced unlimited amounts of energy S
for free.




KVL

Key steps in detail: Assign voltage polarities:

Identify a closed loop: For each component in the loop, determine the positive and
o negative voltage terminals based on the assumed current

Select any complete path within the direction.

circuit where you can start and end at

the same point. Write the KVL equation:

Choose a loop direction: For each element in the loop, add the voltage drop (if going

from positive to negative) or voltage rise (if going from

Decide which way you will traverse ; » ) : :
negative to positive) with the appropriate sign.

the loop (clockwise or
counterclockwise). Set the sum of all these voltage changes equal to zero.



KVL

Important points to remember: Current assumptions:

Sign convention: The voltage polarity assignments are based on the assumed
current direction in the circuit.

Consistent  sign  convention S

crucial. If you move through a voltage Multiple loops:
source from the negative terminal to
the positive terminal, consider it a If your circuit has multiple loops, apply KVL to each loop

positive voltage, and vice versa. separately to generate a system of equations



KCL

To apply Kirchhoff's Current Law (KCL),
follow these steps:

*ldentify the nodes:

Locate all junctions or nodes in the circuit
where multiple wires connect.

*Assign current directions:

Arbitrarily choose a direction for each current
flowing through each branch connected to a
node, indicating whether the current is entering
or leaving the node.

*Write the KCL equation:

At each node, sum up all the currents entering the node and set
it equal to the sum of all currents leaving the node, ensuring that
the algebraic sum is zero.

*Apply the sign convention:

When writing the equation, use a positive sign for currents
entering the node and a negative sign for currents leaving the
node.

*Solve the system of equations:

If you have multiple nodes, you will have a system of equations
that need to be solved simultaneously to find the unknown
currents in the circuit.



KCL

Key points about KCL.:

*Conservation of charge:

KCL is based on the principle that charge cannot be created or
destroyed at a junction, so the total current entering a node must
equal the total current leaving it.

*Mathematical representation:

I3 = ap

b
The equation for KCL can be written as: X(1_in) = Z(l_out) : (%)
where "l_in" represents currents entering the node and "'I_out" Kirchhoff's Current Law (KCL)

represents currents leaving the node



Voltage & Current calculation (KVL, KCL)

~ Example 9.11

60 Q

¥

20 cos (4t~ 15°%) 10mF =

Figure 9.25
For Example 9.11.

60 Q
MW

was () pses

Figure 9.26

The frequency domain equivalent of the

circuit in Fig. 9.25.

Determine v, (f) in the circuit of Fig. 9.25.

Solution:

To do the analysis in the frequency domain, we must first transform
the time domain circuit in Fig. 9.25 to the phasor domain equivalent in

Fig. 9.26. The transformation produces

v,=20cos(dt—-15°) = V,=20/-15"V,
| |

[0mF = —=- =
JoC  j4X 10X 10~
= —j25()
SH = joL=j4X5=,200Q
Let
Z, = Impedance of the 60-() resistor
Z, = Impedance of the parallel combination of the
10-mF capacitor and the 5-H inductor
Then Z; = 60 () and

By the voltage-division principle,

V -iv L ———(20/-15)
"L 604100

= (0.8575/30.96°)20/-15) = 17.15/15.96° V

We convert this to the time domain and obtain

v,(f) = 17.15 cos(dr + 15.96°) V
Homework:

Practice Problem 9.11  Calculate v, in the circuit of Fig. 9.27.

g M Answer: v,(f) = 35.36 cos(10r — 105°) V.

iy

50 cos(10¢+ 30°) @ 10Q Lp-

i
= +

Figure 9.27
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Nodal Analysis

The fundamental steps are the following:

*Determine the number of nodes within the network.

*Pick a reference node and label each remaining node with a
subscripted value of voltage: V1V1, V2V2, and so on.

*Apply Kirchhoff's current law at each node except the reference.
Assume that all unknown currents leave the node for each
application of Kirchhoff's current law.

Solve the resulting equations for the nodal voltages



Solution:

N Odal Analys IS We first convert the circuit to the frequency domain:
Co Co . . . 20cosd4t = 20/0° w = 4rad/s
Find 7, in the circutt of Fig, 10.1 using nodal analysis. H = ol
05H = joL=j2
I
0.1F = — = —j235
10Q |H JoC
W m Thus, the frequency domain equivalent circuit is as shown in Fig. 10.2.
I,
‘ ; | 0Q v, AQ
WeosdtV (I F i 05K —WT M. I
[.!'
20,/0°V @) L _n50 20, <§> % 20

o

Fig: 10.1 .
Fig: 10.2




We obtain the determinants as

Applying KCL at node 1,
1415 25

20 o V| V| V| = V2 — - —_ 7
A ol IR TR l bk
10 2.5 4
' 15 2
or K "(? f?': =300, A, =] ’Llf” ﬂ: ~220
— (1 415V, + 25V, =20 (10.L.1) —
| 0
At node 2. V]—K=15—]5 18.97/18.43° V
Vi-V, V, A, -0
21( + = ._ = —2 F— ¢
SR N ELVAC
But I, = V,/=j2.5. Substituting this gives The current I is given by
* e
2V| V| - VZ V2
e v, 1897( 1845
I, = B 7.59{ 108.4° A
By simplifying, we get 7”2.5 2.5 /
1V, + 15V, =0 (10.1.2)

Transforming this to the time domain,

i, = 7.59 cos(dr + 108.4°) A




Compute V, and V, in the circuit of Fig. 10.4. / Supernode

10/45°V L ‘
—— 1 ......

0, |y 3A ) - _j1Q 6 )
. Vil | Z#V- G ] J6Q 12Q

YO A D — 30 3‘;‘69 %lm

_L -
Solution: _ But a voltage source is connected between nodes | and 2, so that
Nodes 1 and 2 form a supernode as shown in Fig. 10.5. Applying KCL Vo=V, 410 @ (1022)
at the supernode gives i
v, Y, V, Substituting Eq. (10.2.2) in Eq. (10.2.1) results in
AT 6-40/35=(1+2V, = V,=3141/-818°V
or From Eq. (10.2.2),

3= 4V, + (1 = )V, (10..1) Vi =V, +10/45° = 2578/-7048°V




Homewo rk: Calculate V, and V; in the circuit shown in Fig. 10.6.

100/60° V
4Q Vi A~ V%
WWA i)

75/0°V @ 3 49

=10 %29

L

Figure 10.6
For Practice Prob, 10.2.

Answet: V, = 96.8/69.66°V, V, = 16.88/165.72° V.
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What is Mesh Analysis?

What is Mesh Analysis?

Mesh analysis is defined as the method in which the current flowing through a
planar circuit is calculated.

A planar circuit is defined as the circuits that are drawn on the plane surface in
which there are no wires crossing each other. Therefore, a mesh analysis can
also be known as loop analysis or mesh-current method.



Procedure of Mesh Analysis

Step 1:

To identify the meshes and label these mesh currents in either clockwise or counterclockwise
direction.

Step 2:

To observe the amount of current that flows through each element in terms of mesh current.
Step 3:
Writing the mesh equations to all meshes using Kirchhoff’s voltage law and then Ohm’s law.
Step 4.

The mesh currents are obtained by following Step 3 in which the mesh equations are solved.



Mesh Analysis Solution:

Applying KVL to mesh 1, we obtain

Find lo of the following circuit using mesh analysis 8+ /10— DL — (=L — 0, =0 (103.1)
Q For mesh 2,
LiL | 4 — 2 — 2L, — (=1, — (=)L + 20/90° =0 (10.3.2)
l} rl" For mesh 3, I5 = 5. Substituting this in Eqgs. (10.3.1) and (10.3.2), we get
5( ()° A ’ ' — 2Q 8 + ), + j2I, = j50 (10.3.3)
21+ (4 — jhL, = —j20 — j10 (10.3.4)
i IO Q : from which we obtain the determinants
' . 5
T l <-> N/0°V 8+ 8 2 o
A=| . =320+ )1 —)) +4=068
2 4-j4
8 + /8 j50
A, = = 340 — j240 = 416.17/-35.22°
§ () l -j2Q S| 2 '1'30‘ :
: A, 416.17/-35.22°
I, = X’ = 63 =6.12/—35.22° A

The desired current is

I, = -1, = 6.12/144.78° A
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Thevenin's Theorem

Thevenin’s theorem states that it is possible to simplify any linear circuit,
irrespective of how complex it is, to an equivalent circuit with a single voltage
source and a series resistance.

F{S A
A Linear network Vv :
containing — = R
several emfs and -

resistance




Procedure to find Thevenin Circuit

Step 1: For the analysis of the above circuit using Thevenin’s theorem, firstly remove the load
resistance at the centre.

Step 2: Remove the voltage sources’ internal resistance by shorting all the voltage sources
connected to the circuit, i.e. v = 0. If current sources are present in the circuit, then remove the
Internal resistance by open circuiting the sources. This step is done to have an ideal voltage
source or an ideal current source for the analysis.

Step 3: Find the equivalent resistance. In the example, the equivalent resistance of the circuit is
calculated.

Step 4: Find the equivalent voltage.

Step 5: Draw the Thevenin’s equivalent circuit. The Thevenin’s equivalent circuit consists of a
series resistance and a voltage source.



Thevenin Theorem

Obtain the Thevenin equivalent at terminals a-b of the circuit in Fig, 10.22.

d

120/75°V @ ¢

/

Fig: 10.22

Solution:
fd fd
89% —j6 Q == %49 %1129
a b
0 (o
€ C
e

(a)

We find Zq, by setting the voltage source to zero. As shown in
Fig. 10.23(a), the 8-() resistance is now in parallel with the —j6
reactance, so that their combination gives

Z, =—j6[8 = 8—288 3.84 )

1= =J . % = 4 J3-
Similarly, the 4-() resistance is in parallel with the j12 reactance, and
their combination gives

12 X 4 |
=364 /120
4+ 12 .

Z,=4| j12 =



The Thevenin impedance s the seres combinaton of Z; and L
that s,

ZH:Z|+Z):648'1?.640

1

To find Vr,, consider the circuit in Fig 10.23(b), Currents I, and
L, are obtained s

120/7§ 10/75
LI LA

| = =
BN R

d

hl ‘lz
_j6Q == §4Q
120/75°V Ct) " _é Vi g_ .
89§ %jl’m
p
(b)

Applying KVL around loop bcdeab in Fig. 10.23(b) gives
or

480/75°  720/75° + 90°
+
4 + j12 8 — j6

= 37.95/3.43" + 72/201.87°

= —28.936 — j24.55 = 37.95/220.31° V

VTh = 412 +j6l| =



Homework:

Pactice Problem 108 ot e T it .4

: o,
’_‘M‘tﬂ—r“p__g o

Y @ L %m@

Figure 10.04
For Practice Prob, 103,

v Ly = 04~ 20V =64 157
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Maximum Power Transfer

Maximum Power Tran er Theorem %xglarns that
a fig

gnerate maximum er r&
ernzf rsrstan%e é ne o tte resi nce 0
(')\L/rerge oad must qual to he resistance ot the availa

% er words, the r |s%ance f the load must be the same
evenin’s equivalent resistance.

the C se ﬁ(ﬁ. V0|t e SO FCES , Ma I OWG
Pr(% Uuce I el ance ’s valu ulva en
O ne comp conjuga e O e source lmp e

§


https://byjus.com/physics/thevenin-theorem/

Maximum Power Transfer

As shown in the figure, a dc source

network 1s connected with variable
resistance R;.

The fundamental Maximum Power Transfer
Formula 1is

Two terminal
linear circuit

Th

Th




¥ mple 115 Determine the load impedance Z; that maximizes the average power

i drawn from the circuit of Fig. 11.8. What is the maximum average
4Q J

)
o power!
Maximum Power Transfer - i - Solton
~ @ L s * First we obtain the Thevenin equivalent at the load terminals. To get
T Ly, consider the circuit shown in Fig. 11.9(a). We find
Figure 11.8 48-J6)
Iy =5 +4|@-j0)=j5+ = 2933 + j4.467 )
For Example 11.5. m=f+4]6-j6)=] 4+8- 6 J
00 0
AW N—0 MW——TT"—0
+
ey ) S
-i6Q J6
: L5

(a) (b)



In the circuit in Fig. 11.11, find the value of R; that will absorb the Example 11.6
maximum average power. Calculate that power.

To find Vo, consider the circuit in Fig. 11.8(b). By voltage division, “o 8
Solution: |
8 - _[6 We first find the Thevenin equivalent at the terminals of R;. .
V= (10) = 1454/ 103 ot o 0.4V mag Ik
~J = (40 - 30)[| j20 = ————— = 9412 + 22.35Q
Ly = (40 = j30) | j 208070 9412 + j22.35
. ; PR o Figure 11.11
The load impedance draws the maximum power from the circuit when gy yjage division. Fo?Example 48
7, = 1% =2933 - j4467() 0 e e ey
o= 0+ 070 Ay =TI

Accordmg to Eq (11.20), the maximum AVETAge POWeT 15 The value of R, that will absorb the maximum average power is

Vol®  (7.454) R = |Zn) = V94122 + 22357 = 2425 ()

Prax = = — = 2368 W
i 8RTh 8(2.933) The current through the load is
vV 72.76/134°
o= = 1.8/100.42° A

T Zn t R, 33.66 + 2235

The maximum average power absorbed by R; is

Iy
Bl.= 5|l|~RL = 5(1.8)2(24.25) =3929W




Homework:

—_—

Practice Problem 11.5  For the circuit shown in Fig. 11.10, find the load impedance Z; that
absorbs the maximum average power. Calculate that maximum aver-

4200

— 4Lk age power.
89§ G 12A §59 7 Answer: 3.415 - j0.7317 (), 51.47 .
- L
Figure 11.10

In Fig. 11.12, the resistor R, is adjusted untl it absorbs the maximum  Practice Problem 11.6
average power. Calculate R; and the maximum average power
absorbed by it.

§0Q  j60Q

120/60° V 9on§ = -j30Q §RL

Figure 11.12
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Superposition Theorem

Find lo using superposition theory of the following circuit

4Q
WW

I o rl,,
/A (§ Yo ==
109

I, ) 20/9%°V
L) Qu
SQ% @ == -j20)




Solution:

4Q 4 Q
o AWAAA VWAAL

= -2 Q LA ® @ == —j2Q tr:
[ S @) j20v oy L
8 Q == 89% fl—D = 20
(a) (b)
Let
| PRl 108, ) b/ (10.5.1)

where I, and I, are due to the voltage and current sources, respectively.
To find I, consider the circuit in Fig. 10.12(a). If we let Z be the
parallel combination of —;j2 and 8 + j10. then

—j2(8 + j10)

Z = = 0.25 — j2.25
—2j + 8 + j10 J

and current I, is
J20 720

I’, - —
°" 4—p +7Z 435—ja32s

or
I, = —2:383-4+j2.353 (10.5.2)
To get I, consider the circuit in Fig. 10.12(b). For mesh 1,
(8 + j8)I, — j10I5 + 21, = 0 (10.5.3)
For mesh 2,

4 —jL, + 21, + 21 =0 (10.5.4)



For mesh 3.

IL=35 (10.5.5)

From Eqgs. (10.5.4) and (10.5.5),
4 —j4L, + 21, +j10=0

Expressing I, in terms of I, gives

L=2+,2),b-5 (10.5.6)
Substituting Egs. (10.5.5) and (10.5.6) into Eq. (10.5.3), we get

(8 + 82+ j2)I, — 5] —j50 + j2I, = 0
or
90 — j40
34

I, = = 2,647 — j1.176

Current I, is obtained as
I, = -1, = —2.647 + j1.176 (10.5.7)
From Eqs. (10.5.2) and (10.5.7), we write
I,=1,+1I,=-5+;3529 =6.12/144.78° A

Homework:

Find v, of the following circuit
superposition theorem.

10005 2V

H | ) 4
/W +WW_ \fVW
Ly
JinStA = 0IF 5V

using



Solution

Source Transformation:

We transform the voltage source to a current source and obtain the
circuit in Fig. 10.18(a), where

Calculate V, in the circuit of Fig. 10.17 using the method of source 20/-9%0° o
transformation. == =40 =-HA
o5 i =0 The parallel combination of 5-() resistance and (3 + j4) impedance gives
MV——MW—| 53 + j4) |
L = —=25+j1.250
10 8§+ j4
: .
20 /-90°V (f_) 0Q 2V, Converting the current source to a voltage source yields the circuit in
3 40 - Fig. 10.18(b), where
V,=LZ, = —j425+j125)=5-jl10V

Fig: 10.17



aq -i13Q

ww—ij| Homework:
30 .
L=—4A ()  Zsa ey 8 %V Find I, in the circuit of Fig. 10.19 using the concept of source
transformation.

(a)

20 jlQ

25Q jl25Q 40 —/13Q

WW— T —AW——| l
+ L
V,=5-j10v () 100 % v,
12/90° A D | Q
(b) :
-j29Q
By voltage division,

10 o .
Vim0t 25t ra—ji3 0 O =B/Z8 NV Ans: 9.863< 99.46°A




Given that

v(r) = 120 cos(377t + 45°) V. and (1) = 10 cos(377r — 10°) A

find the instantaneous power and the average power absorbed by the

passive linear network of Fig. 11.1.
Solution:
The instantaneous power is given by
p = vi = 1200 cos(377t + 45°) cos(377t — 10°)

Applying the trigonometric identity
l
cosAcosB = ;[cos(A + B) + cos(A — B)]

gives
p = 600[cos(754r + 35°) + cos 55°]
or
p(t) = 344.2 + 600 cos(754t + 35°) W

The average power is

| 1
P= EV"'I'" cos(f, — @, = 5120(10) cos[45° — (—10%)]

= 600 cos 55° = 3442 W

which is the constant part of p(r) above.

Calculate the average power absorbed by an impedance Z = 30 — j70 ()
when a voltage V = lZOﬂ is applied across it.

Solution:
The current through the impedance is
120/0° 120/0°
I=-Y— L = 1.576/66.8° A

Z 30-j70 76.16/—66.8°

The average power is

| l
P= Voo, = ) = (10(1576) 00 - 668 = L4 W



Determine the rms value of the current waveform in Fig. 11.14. If the
current is passed through a 2-) resistor, find the average power absorbed
by the resistor.

i(1) A

10 —

)
~y

Solution:
The period of the waveform is 7 = 4. Over a period, we can write the
current waveform as

() = 5t, O<a<2
! 10, 2 <1< 4

The rms value is

1 T 1 2 4
r = \/—f i dt = \/—[f (50)* dr + J (—10)%1:]
r 0 4 2

0
TS 4] \/1(200 )
= - —_ — e (o S = 8.
\/4[253 | 5 *+200)=28165A

The power absorbed by a 2-) resistor is
P=1TI2..R =(@165%2)=1333W

2

4+ 100z
0




The waveform shown in Fig. 11.16 is a half-wave rectified sine wave.
Find the rms value and the amount of average power dissipated in a
10-€) resistor.

v(r) A
10 |-
0 T 2w 37 t; R A7AT
T Find the rms value of the current waveform of Fig. 11,15 If the current Practice Problem 11.
The period of the voltage waveform is 7 = 24, and flows through  9-{) resisor, calculate the average power absorbed by
: the resist i
10sinz, 0 <1< 7 TESISIOL.
v(r) =
0, a <t <2
The rms value is obtained as Answer: 9.238 A, 768 W. L6

1 T 1 o 2m
Vi, =— f vi(1) dt = —“ (10 sin7)” dr + f 0% dr ]
T % 27 %

= —>
|

But sin’7 = %(l — cos 2r). Hence,

1 7100 50 in 2
Vo o= > J (1 — cos 2 dt = —<t = I)
T J, 2 27T

w

2

0

ﬂ(77'—lsin21'r—0)=25, Wone = 3N
2 2 .

The average power absorbed is

Woay .52
P= == = 2.5W
R 10




A series-connected load draws a current i(7) = 4 cos(1007r + 10°) A
when the applied voltage is v(r) = 120 cos(1007rt — 20°) V. Find the
apparent power and the power factor of the load. Determine the ele-
ment values that form the series-connected load.

Solution:
The apparent power is

12

SIB
Sl

S = Vimshms = 240 VA

The power factor is
pf = cos(8, — 6;) = cos(—20° — 10°) = 0.866 (leading)

The pf is leading because the current leads the voltage. The pf may
also be obtained from the load impedance.

7 =

= = 30/—30° = 2598 — j15 Q
4/10°

pf = cos(—30°) = 0.866 (leading)

v 120/—20°
I

The load impedance Z can be modeled by a 25.98-() resistor in series
with a capacitor with

1
X=—15= ———
c wC

or
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Problems solution on 3-phase AC load
3-phase source and load connection systems

a —a> A a —‘-I-b A
]
Van d‘? I, / 2
-
s AN vcu ; +_ vub
vcn 6 a vbn ZY Zt' lb
c I M i
—bb C B ; \y b
L b f | Vic I
— —_—
Figure 12.10 Figure 12.17

Balanced Y-Y connection. A balanced A-A connection.



Problems solution on 3-phase AC load

3-phase source and load connection systems

a — —s
vca +- +. vab
I
f—o— = .,
b e
vbr lr
— _lf..
Figure 12.18 Figure 12.14

A balanced A-Y connection. Balanced Y-A connection.



(a)

A4

n

(b)
re 12.7
' sequences: (a) abc or positive
nce, (b) ach or negative sequence.

Let us consider the wye-connected voltages in Fig. 12.6(a) for
now. The voltages V,, V,,.. and V_, are respectively between lines a, b,
and ¢, and the neutral line n. These voltages are called phase voltages.
If the voltage sources have the same amplitude and frequency @ and
are out of phase with each other by 120°, the voltages are said to be
balanced. This implies that

V(lll + vhn P V('n - 0 (12-1)
|Vun| - Ivhn| - |Vc'n| (12‘2)
Thus,

Balanced phase voltages are equal in magnitude and are out of phase
with each other by 120°.

Since the three-phase voltages are 120° out of phase with each
other, there are two possible combinations. One possibility is shown in
Fig. 12.7(a) and expressed mathematically as

Van = V,/0°
Vbn = Vp —120° (12.3)
V., = V,, —240° = Vo/ T 120°




Calculate the line currents in the three-wire Y-Y system of Fig. 12.13.

5-j2Q

a 3
9 110,/0° V
10+/8Q
110,/-240° V e 110/-120° V
5-2Q 5 10+j8Q
C O
. 10+/8Q
5-2Q

Figure 12.13
Three-wire Y-Y system: for Example 12.2.



Example 12.2 Example 12.3

Solution: A balanced abc-sequence Y-connected source with V,,, = 100/10° V
The three-phase circuit in Fig. 12.13 is balanced: we may replace it is connected to a A-connected balanced load (8 + j4) () per phase. Cal-

with its single-phase equivalent circuit such as in Fig. 12.12. We obtain

culate the phase and line currents.
I, from the single-phase analysis as

I, = v_tm ’ la
(4 Zy . A
where Zy = (5 = j2) + (10 + j8) = 15 + j6 = 16.155/21.8°. Hence,
110/0°
LL=——"—7"7""—7-=681/-218°A
16.155/21.8°
Since the source voltages in Fig. 12.13 are in positive sequence, the RO
line currents are also in positive sequence:
l(
I, =1,/-120° = 6.81/-141.8° A ——

F; 12.14
I = 1,/-240° = 6.81/=261.8° A = 6.81/98.2° A oree

Balanced Y-A connection.



Solution:
This can be solved in two ways.

B METHOD 1 The load impedance is
Z, =8 + j4 = 8.944/26.57° ()
If the phase voltage V,, = 100/10°, then the line voltage is

Var = Vi V3/30° = 100V3/10° + 30° = V4

or
Vg = 173.2/40°V

The phase currents are
Vi 173.2 /40°

1 — —

AB T 7. 8944 /26.57°
Ipe = Lug/—120° = 19.36/—106.57° A
Ica = Lig/+120° = 19.36/133.43° A

= 19.36/13.43° A

The line currents are
I, = LizV3/=30° = V3(19.36)/13.43° — 30°
= 33.53/—16.57° A
I,=1,/—120° = 33.53[—136.57° A
I.=1,/+120° = 33.53/103.43° A

B METHOD 2 Alternatively, using single-phase analysis,
vV, 100/10°

Ia = =
Z,/3 2981 {26.57°

as above. Other line currents are obtained using the abc phase sequence.

=33.54/-16.5T° A




100/0°

I = = 667LA
100/120°  100/120°
= = L = 8.94/93.44° A

10+/5  11.18/26.56°

: 100/-120"  100/-120°

‘T 6-8  10/-53.13°

=10/-66.87° A

Figure 12.10

Balanced Y-Y connection.

The unbalanced Y-load of Fig. 12.23 has balanced voltages of 100 V Using Eq. (12.60), the current in the neutral line is

and the ach sequence. Calculate the line currents and the neutral cur- L=-1,+1,+1)=—(667 —0.54 + j8.92 + 3.93 — j9.2)
rent. Take Zy = 150, Zg =10 + j50,Zc = 6 — j8 (). = —10.06 + j0.28 = 10.06/178.4° A
Solution:

Using Eq. (12.59), the line currents are
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Single Phase & Three-Phase Power Measurement

Section 11.9 presented the wattmeter as the instrument for measuring
the average (or real) power in single-phase circuits. A single wattmeter
can also measure the average power in a three-phase system that is bal-
anced, so that P, = P, = P5; the total power is three times the read-
ing of that one wattmeter. However, two or three single-phase wattmeters
are necessary to measure power if the system is unbalanced. The three-
wattmeter method of power measurement, shown in Fig. 12.33, will
work regardless of whether the load is balanced or unbalanced, wye-
or delta-connected. The three-wattmeter method is well suited for
power measurement in a three-phase system where the power factor is
constantly changing. The total average power is the algebraic sum of
the three wattmeter readings,

Pr=P + P+ P, (12.61)

a

b

c

—2=

Figure 12.33
Three-wattmeter method for measuring
three-phase power.

Three-phase
load (wye
or delta,
balanced or
unbalanced)

=]
ol
H+ — 1+

¢ O

Three-phase
load (wye
or delta,
balanced or
unbalanced)

+ — H

Figure 12.34

Two-wattmeter method for measuring

three-phase power.




where P,, Py, and P5 correspond to the readings of wattmeters W, W,
and Wi, respectively. Notice that the common or reference point o in
Fig. 12.33 1s selected arbitrarily. If the load is wye-connected, pomt o
can be connected to the neutral point n. For a delta-connected load,
point o can be connected to any point. If point o is connected to point
b, for example, the voltage coil in wattmeter W, reads zero and P, = 0,
indicating that wattmeter W, is not necessary. Thus, two wattmeters are
sufficient to measure the total power.

The two-wattmeter method is the most commonly used method for
three-phase power measurement. The two wattmeters must be properly
connected to any two phases, as shown typically in Fig. 12.34. Notice
that the current coil of each wattmeter measures the line current, while
the respective voltage coil is connected between the line and the third
line and measures the line voltage. Also notice that the * terminal of
the voltage coil is connected to the line to which the corresponding
current coil is connected. Although the individual wattmeters no longer
read the power taken by any particular phase, the algebraic sum of the
two wattmeter readings equals the total average power absorbed by the
load, regardless of whether it is wye- or delta-connected, balanced or

unbalanced. The total real power is equal to the algebraic sum of the
two wattmeter readings,

P, =P, + P, (12.62)

We will show here that the method works for a balanced three-phase
system.

Consider the balanced, wye-connected load in Fig. 12.35. Our
objective is to apply the two-wattmeter method to find the average
power absorbed by the load. Assume the source is in the abc sequence
and the load impedance Zy = ZYZQ' Due to the load impedance, each
voltage coil leads its current coil by 6, so that the power factor is cos#.
We recall that each line voltage leads the corresponding phase voltage
by 30°. Thus, the total phase difference between the phase current I,
and line voltage V,, is 0 + 30°, and the average power read by
wattmeter W, is

P, = Re[V,,I¥] = V., I, cos(8 + 30°) = VI, cos(® + 30°) (12.63)



W,
a o A11%
I
+ oy L a ¥
Pl Vab=Va-Vo=Va+
I, 7 ab—Va-Vb—Va ('
= Y
b o . Vb)
vcb y 2
W X
+ + 2 + L. ) % ¥ Ve
¢ O——F—1+TM
¢ A1k (b)
3 Figure 12.11
Figure 12.35 Phasor diagrams illustrating the relation-
Two-wattmeter method applied to a balanced wye load. ship between line voltages and phase
voltages.
Similarly, we can show that the average power read by wattmeter 2 is Similarly,

P, = Re[V,,IF] = VL. cos(6 = 30°) = VI, cos(f — 30°) (12.64)
We now use the trigonometric identities

cos(A + B) = cosAcos B—sinAsinB
= &w (12.65)
coS(A — B) = cos Acos B + sinA sin B

to find the sum and the difference of the two wattmeter readings in
Eas. (12.63) and (12.64):

P, = Py =V I;[cos(f + 30°) — cos(f — 30°)]
= V,I;(cosf cos 30° — sinf sin 30°
—cosf cos 30° — sinfisin 30°) (1268
= =V, ;2 sin 30° sinf
Py =P, =V,I sinf



P, + P, = V,I;[cos(f + 30°) + cos(f — 30°)]
= V,I;(cos6 cos 30° — sinf sin 30°
+ cosf cos 30° + sinf sin 30°)
= V1,2 cos 30° cos = V3V, I, cos®  (12.66)

since 2 cos 30° = V3. Comparing Eq. (12.66) with Eq. (12.50) shows
that the sum of the wattmeter readings gives the total average power,

PT=P1+P2 (12.67)

since 2 sin 30° = 1. Comparing Eq. (12.68) with Eq. (12.51) shows
that the difference of the wattmeter readings is proportional to the total
reactive power, or

Or = V3(P, — P)) (12.69)

From Egs. (12.67) and (12.69), the total apparent power can be
obtained as

Sy = NPz + 0F (12.70)

Dividing Eq. (12.69) by Eq. (12.67) gives the tangent of the power fac-
tor angle as

QT Pw—Pl
tanf = — = 3-
ml) = =V R,

(12.71)

from which we can obtain the power factor as pf = cosf. Thus, the
two-wattmeter method not only provides the total real and reactive pow-
ers, it can also be used to compute the power factor. From Egs. (12.67),
(12.69), and (12.71), we conclude that:

1. If P2 =Py, the load is resistive.
2. If P2 > Py, the load is inductive.

3. If P2 < Py the load is capacitive.

Although these results are derived from a balanced wye-connected
load, they are equally valid for a balanced delta-connected load. How-
ever, the two-wattmeter method cannot be used for power measurement
in a three-phase four-wire system unless the current through the neu-
tral line is zero. We use the three-wattmeter method to measure the real
power in a three-phase four-wire system.
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xample 12.9

la
a —_— A
vun ln ZY
n N
vcn 6 a vbn ZY ZY
& lb
g & B
lc b "
#

Figure 12.10

Balanced Y-Y connection.

The unbalanced Y-load of Fig. 12.23 has balanced voltages of 100 V
and the acb sequence. Calculate the line currents and the neutral cur-
rent. Take Zy = 150, Zp = 10 + j5Q, Zc = 6 — j8 ().



Solution:
Using Eq. (12.59), the line currents are
100 /0°
I, = L 6.67/0° A
15
100/120°  100/120°
L, = i = 8.94/93.44° A
10 +j5  11.18/26.56°
_ 100/-120° _ 100/-120°
I L = = 10/-66.87° A

‘ 6 —j8 10/-53.13°

Using Eq. (12.60), the current in the neutral line is

L,=—-1,+1,+L)=—(667 — 054 + j892 + 3.93 — j9.2)
= —10.06 + j0.28 = 10.06/178.4° A

Solution:
Part of the problem is already solved in Example 12.9. Assume that
the wattmeters are properly connected as in Fig. 12.36.

—
o W)

A
Y &
I Van 15Q
n
—_—

C —
- 10 Q
> I Van —-j8Q
CN b
— 15 Q
o 2. J C

&)

Figure 12.36
For Example 12.13.



(a) From Example 12.9,
Van = 100/0°, Vien = 100{120°, Vey = 100/—-120°V
while

I, =667/0°, 1,=894/9344°, 1. =10/—66.87°A

We calculate the wattmeter readings as follows:

Py = Re(VayI7) = Vayl, cos(By,, — 61)
= 100 X 6.67 X cos(0° — 0°) = 667 W

P> = Re(VpnT;) = Viyl, cos(Ov,, — 6r,) Example 12.14
= 100 X 8.94 X cos(120° — 93.44°) = 800 W _
Py = Re(VeyI®) = Veyl, cos(By,.. — 1) The two-wattmeter method produces wattmeter readings P, = 1560 W

and P, = 2100 W when connected to a delta-connected load. If the line
voltage is 220 V, calculate: (a) the per-phase average power, (b) the per-
phase reactive power, (c) the power factor, and (d) the phase impedance.

= 100 X 10 X cos(—120° + 66.87°) = 600 W
(b) The total power absorbed is
Py =P, + P, + P; = 667 + 800 + 600 = 2067 W

We can find the power absorbed by the resistors in Fig. 12.36 and use
that to check or confirm this result

Py = |L[*(15) + |I,|*(10) + |I]*(6)
= 6.67%(15) + 8.94%(10) + 10%(6)
= 667 + 800 + 600 = 2067 W

which is exactly the same thing.



Solution:
We can apply the given results to the delta-connected load.

(a) The total real or average power is
Pr= P, + P, = 1560 + 2100 = 3660 W

The per-phase average power is then

P

|
P, = 3Pr=120W

(b) The total reactive power is
Or = V3(P, — P;) = V3(2100 — 1560) = 935.3 VAR

so that the per-phase reactive power is

|
0, = 30r = 31177 VAR

(c) The power angle is

0 = tan_'& = tan—'w = 14.33°
P; 3660

Hence, the power factor is

cosfl = 0.9689 (lagging)

It is a lagging pf because Q7 is positive or P, > P;.

(c) The phase impedance is Z, = Z, ﬁ We know that 6 is the same as
the pf angle; that is, § = 14.33°.

We recall that for a delta-connected load, V, = V, = 220 V. From
Eq. (12.46),

P, =V]I 56 = I—$—5723A
B YR es ?~ 200 x 09689
Hence,
V, 220
Z,=-—t=——=38440Q
1, 5723
and

Z, = 3844/14.33° Q



Example 12.15
The three-phase balanced load in Fig. 12.35 has impedance per phase

of Zy = 8 + j6 ). If the load is connected to 208-V lines, predict the
readings of the wattmeters W, and W,. Find Py and Q. I

so that the pf angle is 36.87°. Since the line voltage V;, = 208 V, the
line current is

Vo 208/V3

= = 12A
Zy| 10

Solution: Then

The impedance per phase is
P, = V. I, cos(f + 30°) = 208 X 12 X cos(36.87° + 30°)

Zy =8+ j6 =10/36.87° ) = 0R0.48 W
W, P> = VI, cos(f — 30°) = 208 X 12 X cos(36.87° — 30°)
a o IR I = 2478.1 W
IR |
* + + % Thus, wattmeter 1 reads 980.48 W, while wattmeter 2 reads 2478.1 W.
Vab Since P, > Py, the load is inductive. This is evident from the load Zy
. i Zy Zy itself. Next,
b o .
s Z PT=P|+P2=3.459kW
Y
Vcb and
+ + Wa + LW Or = V3(P, — P;) = V3(1497.6) VAR = 2.594 kVAR
o ‘> 2112 |
£I11M

Figure 12.35
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Effective power, average power, Power triangle

The instantaneous power (in watts) is the power at any instant of time. The effective value of a periodic current is the dc current that deliv-
ers the same average power to a resistor as the periodic current.

p() = v(0)i(1) The apparent power (in VA) is the product of the rms values of volt-

age and current.

The average power, in watts, is the average of the instantaneous power
over one period. The power factor is the cosine of the phase difference between volt-
age and current. It is also the cosine of the angle of the load impedance.

Thus, the average power is given by Complex power (in VA) is the product of the ms voltage phasor and
[ (T the complex conjugate of the ms current phasor. As a complex quantity,
P= - [ p(t) dt (11.6) its real part is real power P and its imaginary part is reactive power Q.

v The complex, real, and reactive powers of the sources equal the

respective sums of the complex, real, and reactive powers of the indi-

A resistive load (R) absorbs power at all times, while a reactive load :
vidual loads.

(L or C) absorbs zero average power.

The process of increasing the power factor without altering the voltage
or current to the original load is known as power factor correction.



Power factor Iimprovement plant

11.8 Power Factor Correction

Most domestic loads (such as washing machines, air conditioners, and
refrigerators) and industrial loads (such as induction motors) are induc-
tive and operate at a low lagging power factor. Although the inductive
nature of the load cannot be changed, we can increase its power factor.

The process of increasing the power factor without altering the voltage
or current to the original load i1s known as power factor correction.

Since most loads are inductive, as shown in Fig. 11.27(a), a load’s
power factor is improved or corrected by deliberately installing a
capacitor in parallel with the load, as shown in Fig. 11.27(b). The effect
of adding the capacitor can be illustrated using either the power trian-
gle or the phasor diagram of the currents involved. Figure 11.28 shows
the latter, where it is assumed that the circuit in Fig. 11.27(a) has a
power factor of cosf;. while the one in Fig. 11.27(b) has a power fac-
tor of cos@,. It is evident from Fig. 11.28 that adding the capacitor has
caused the phase angle between the supplied voltage and current to
reduce from 6, to 6,, thereby increasing the power factor. We also
notice from the magnitudes of the vectors in Fig. 11.28 that with the



Power factor Iimprovement plant

same supplied voltage, the circuit in Fig. 11.27(a) draws larger current
I; than the current / drawn by the circuit in Fig. 11.27(b). Power com-
panies charge more for larger currents, because they result in increased
power losses (by a squared factor, since P = I7 R). Therefore, it is ben-
eficial to both the power company and the consumer that every effort
1s made to minimize current level or keep the power factor as close to
unity as possible. By choosing a suitable size for the capacitor, the cur-
rent can be made to be completely in phase with the voltage, imply-
ing unity power factor.

1 X
—_—
O -
+ ‘ ‘l,_ + ‘)*l,_ ‘l‘.
= =3 &

\Y 1 & 1 Inductive \Y Inductive ! 11 - C

| 3 1 load load j !
by —j_l (':" . [ )

(a) (b)
Figure 11.27
Power factor correction: (a) original inductive load,
(b) inductive load with improved power factor.,

Figure 11.28

Phasor diagram showing the effect of
adding a capacitor in parallel with the
inductive load.

We can look at the power factor correction from another perspec-
tive. Consider the power triangle in Fig. 11.29. If the original inductive
load has apparent power §,, then

P = Sl COSO[, Ql o S] Sin9| e Ptan@l (11.57)



Figure 11.29

Power triangle tllustrating power factor
correction.

If we desire to increase the power factor from cosf, to cosfl, without
altering the real power (1., P = §, cosfl), then the new reactive power is

Q2 =P tan92 (11.58)

The reduction in the reactive power is caused by the shunt capacitor;
that 1s,

QC = Q| = Q2 = P(tan@l o> tan02) (11.59)

But from By, (1146), 0 = Viy/Xe = 0CV 3. The value of the
required shunt capacitance C 15 determined as

P(tanf), = tanf
- Qg _ (tanf; | anfh) 1160

0V 0V e




Note that the real power P dissipated by the load is not affected by the
power factor correction because the average power due to the capaci-

tance 1S zero.

Although the most common situation in practice i1s that of an
inductive load, it is also possible that the load 1s capacitive; that is, the
load 1s operating at a leading power factor. In this case, an inductor
should be connected across the load for power factor correction. The

required shunt inductance L can be calculated from

2 9.4 2
Vl'nlS vmls Vrms
XL (l)L (UQL

Or

(11.61)

where OQ; = O, — 0,, the difference between the new and old reac-

tive powers.



Examp'e 1 1 ’1 5 The real power P has not changed. But the apparent power has

When connected to a 120-V (rms), 60-Hz power line, changed; its new value is
4 kW at a lagging power factor of 0.8. Find the value p

necessary to raise the pf to 0.95. $ = cost, 095 4210.5 VA

The new reactive power is

0> = §;sinf = 13144 VAR

Solution:
If the pf = 0.8, then
The difference between the new and old reactive powers is due to the

cosf, = 0.8 = 0, = 36. ®7° parallel addition of the capacitor to the load. The reactive power due
to the capacitor is

where 6, is the phase difference between voltage ar Oc =0, — 0, = 3000 — 13144 = 1685.6 VAR
obtain the apparent power from the real power and the,
P 4000 Oc 1685.6
— - —= C= = = 310.5 uF
S cosf, 0.8 5000 VA wV2 . 27 X 60 X 1207 .

The reactive power is
Q, = §, sinf = 5000 sin 36.87 = 3000 VAR
When the pf is raised to 0.95,

cosf, = 0.95 =3 6, = 18.19°

()



The real power P has not changed. But the apparent power has
changed; its new value is

The new reactive power is
0> = S>sinf, = 13144 VAR

The difference between the new and old reactive powers is due to the
parallel addition of the capacitor to the load. The reactive power due
to the capacitor is

O-= 0, — 0, = 3000 — 13144 = 1685.6 VAR

and

. 1685.6
- L

= = = 310.5 uF
wVi. . 27 X 60 X 1207 =
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“Learning IS not a destination; 1t IS a
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— Kevin Horsley
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